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1 Introduction

Two of the profound open problems in the theory of three dimensional viscous flow are

the unique solvability theorem for all time and the existence theorem for the global attrac-

tor. We have shown in our earlier studies [10, 9, 11, 13] that certain regularizatlons of the

Navier-Stokes equations are uniquely solvable (up to dimension six) and can be character-

ized by compact global attractors. A natural question then is to investigate the possibility

of establishing such results for the conventional Navier-Stokes equations by a limit process.

In this paper we will accomplish this for the two dimensional case. We prove in particular

that the compact global attractor A_ for the regularized system converges to the compact

global attractor A of the conventional system as e --_ 0.

The outline of the paper is as follows. In §2 we present the relevant mathematical frame-

work for the paper. In §3 we establish several uniform estimates for the generalized solutions

of the regularized system. These estimates hold independent of the size of the regulariza-

tion parameter and remain valid when this parameter goes to zero. In §4 we show that the

solution of the regularized system converges to the solution of the conventional system as

the regularization parameter goes to zero. The next two sections deal with convergence of

attractors. In §5 we establish the convergence of the simple case of time periodic solutions.

Then in §6 we prove the central result of this paper establishing the upper semicontinuity of

the compact global attractor A_ at e = 0.

The question of the convergence of A_ to A is thus completely answered for the two di-

mensional case. Our future investigations will be concerned with the corresponding problem

for the three dimensional case. We have already reported partial results in this direction in

[10, 9] where it was shown that the generalized solutions of the three dimensional regular-

ized system converges to the solution of the conventional system under certain conditions.

The methods validated in this paper certainly give us guidelines to elaborate the three di-

mensional case. We remark here that the use of the artificial viscosity method to establish

solvability has also been successful in other branches of partial differential equations. A well



known example of such a result is the viscosity solution method for the Hamilton-Jacobi

equations [2].

2 Notations and Preliminaries

We regularize the Navier-Stokes system by adding a fourth order artificial viscosity term

(Laplacian Square) to the conventional system. In this paper we will restrict ourselves to

periodic boundary conditions. A thorough study of the regularized system with this and

other types of boundary conditions was carried out in [10, 9, 11].

Let us consider the velocity field u = (ul, u2) and pressure field p with space periodic

in a x (o,,_), (1)

in _ × (0, c_). _ (2)

v _e (0,_), (3)

V t E (0, oo), (4)

in _. (5)

condition in R 2 such that for f_ -- (0, L) x (0, L), we have

O--t + eA2u - vAu + (u • V)u + Vp = f,

V.u =0,

u(_ + Le,,t) = u(-.,t) i= 1,2,

p(2 4- Le,,t) = p(_,t) i= 1,2,

,,(_,o) = ,,o(_),

Here v > 0 is the coefficient of the kinematic viscosity of the fluid and e > 0 is the artificial

dissipation parameter, y and 40 are prescribed vectorfields. Notice that the conventional

Navier-Stokes equations correspond to the value of the regularized parameter e = 0.

We denote by H"(f_), the Sobolev space of L-periodic generalized functions (condition

(3)) which have up to order m square integrable distributional derivatives. These spaces are

endowed with the inner product

and the norm

(u,,),_= _ (Dau,Da,)c,(o)
la l<._

I1_II,-,,= ( _ IID'_'II_,,(.))v_.
Ic_I_<,'_

2
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Suppose we expand u E H"(fl) by the Fourier series

,,(,,) = _ c,,_,,,,,../L,
kE Z _

then the Sobolev space u C H"(f_) can be characterized by

H'_(n) = {,,I a_- c__, _ Ikl2'_lc_l_< oo}.
k6Z 2

Wedenoteby _'_(a) thesubspaceofH'_(a) with,.eroaverage:

/:/'_(_) c H'(_) ; _ _(.)d. = o}.

For rn = 0, we have/:/°(fl) = L2(_).

We introduce the following solenoidal subspaces which are important to our analysis:

z_= {,, c L2(_), div,,=0, ,, ,_lr, = -,, "-If,÷,, i= 1,2};

Q = {- C 9x(12), divu = 0, 3'0ulr, = 3'oulr,+,, i= 1,2}.

V= {,, c H2(fl), div,_ =0, %,_lr, ='yo,,Ir,+,,'n,,Ir, = -'n,,Ir,÷,, i= 1,9.}.

Here the faces of f_ are numbered as

Pi=0flVl{zi=0} and Fi+2=0nN{zi=L},i=l,2.

Here 70, 3'1 are the trace operators and n is the unit outward normal on aft.

The space H is endowed with the inner product (u,V)L,(fl) and norm lu[ = (u,u _1/2jL2(n)

(or I1" I1o)- xt can be shown that the norm induced by/:P(_I) and the norm IIWlIL,(o)

are equivaIent in I?". Similarly, in V the norm induced by/:/2(fl) is equivalent to the norm

IIA,,II_,(,). We then denote I1,,11= Ila,,ll_.(,) = (_,,,)v as norm in V derived from the

inner product

(u,v)v = (ZX_,nv).

Let 1)", V' denote the dual spaces of V and V respectively.



J

The Stokes operator A1 can be characterized explicitly using Fourier series. We write the

Stokes problem,

as

-Au+Vq g, in_,
V • u = 0, in _.

Alu = g, with D(AI) = {. e H, Alu • H}.

We have in fact,

u • D(A1) = f-I2(f_) n H = V. (6)

Similarly, we can solve by Fourier series the following linear problem which is fundamental

to our analysis:

A2v+Vp=y, in_,
(7)

V-. =0, inn.

The linear operator A (which we call the dissipation operator) is characterized by A. = f. It

can be shown that the self adjoint operator A •/:(D(A); H)n £(V; V')is closed with D(A)

dense in V C H. Moreover, we can define positive as well as negative powers A", a • R

with domain D(A°'). Let us denote by X_ the space,

X,.. = D(A _'/4) = {u •/'/_(fl), divu = 0}.

In fact the norm induced by far"(_) is equivalent to the norm IA*'/4u ] in X... This means

AII-II,_ IA%I <__11-11,,,, v u • D(A"), V a • R. (s)

We can deduce from a theorem due to Lions [7] that D(A x/2) = V. Thus,

D(AI) = V = D(A_/2). (9)

.... By Reliich_s Lemma [1] A -x as a mapping in H is compact. Hence the spectrum of

operator A is discrete with finite multiplicities and can be written explicitly using Fourier

series as

16_r4 4
_= --_-_lkl , k = (kl, k2).

4



The selfadjointoperator A possessesan orthonormal setof eigenfunctions{w 9}_o=,complete

in H,

Awj = _wj, _o_ C D(A), Vj.

The above results can be appfied to the Stokes operator A1 as well. The eigenwlues of A1

are

4"/i"2 2

u_ = -_-rlkl, k = (kl, k_).

The corresponding orthonormM set of eigenfunctions {@ j}_'=l is complete in H and

Alw j : _jw j , w j e D(AO, V j.

Remark: For the space periodic case considered in this paper, the Stokes operator A1 is

in fact equal to A 1/2. However since for other types of boundary conditions they are different

we prefer to give them distinct notations.

Let us now define the trilinear form b(.,-, .) associated with the inertia terms:

,fo 0b(u,,,,_) = Y] ,,_D_,,j,_jd-., D_- 0_"
i,j= 1

It can be easily shown that

and

b(.,_,_) =-b(.,_.,.), v.,.,- e v

b(.,.,.) = 0, v.,. e y.

In the case of periodic boundary conditions, we have in addition [15, Lemm& 3.1]

b(u,u,A_u) = O, V u e D(A1). (10)

Using the discrete HSlder inequality and Sobolev embedding theorem we can show that

b(.,.,-)is trillnearcontinuous on/:/m,(f_) × /:/m,+,(_/)x f-/-_s(f_),rnl_> 0 [15]:

Ib(,,,-,,,,)l < _o11,,If.,,If,,II,_,+,ll'_I1-,,,

5
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T'_ 1 -_- T'_ 2 + T'D, 3 > 1.

The following well known estimate will be used later,

Ib(_,_,to)l _<c,l ll/21Wl'/21 l'/21vvt'/21Vwl, v u,v,to E v( or Tl), (11)

where cl is a positive constant.

The continuity property of the trilinear form enables us to define (using Riesz represen-

tation theorem) a bilinear continuous operator B from/:/"' (_) x f/='+_(fl) into (/-/"'(fl))'.

In particular, for 4, v, to E V, B(t_, v ) E V' will be defined by

< B(u, _,), to >v, xv = b(u, v, to),

Similarly, we define B(u, v ) E 1/" by

VtoEV.

< vto c ft.

Using the operators defined above we can write the regularized system (1)-(5) in the

evolution form:

The existence and umc

dgg •

+ eAu, + vA, u, + B(u,, u,) = f, t>O,

(12)

=

ueness theorems for initial value problem (12) can be found in [10, 9].

The main result in this work is:

Theorem 2.1

(i) Let f E L2(0, T; V') and Uo E H be given. Then there exists a Unique weak solution of

(12) which satisfies u, e C([0, T]; H)M L2(0, T; V), V T > 0.

(ii) Let f E L2(0, T; H) and Uo E V be given. Then there exists a unique strong solution of

(1_) which satisfies u, e C([0, T]; V) M L2(O,T; D(A)), VT > O.

[]
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Let usdenoteby W,(t) the nonlinear semigroup associated with the solution of the regularized

system (12). This means W,(t, 0;u,o) = u,(t) for all t >_ 0.

Notice that the conventional Navier-Stokes system can be written in the evolution form:

-g/-+ _,A,,, + _(,_,,,) = S, _> 0, (13)

,_(0)= ,,o.

The following unique solvability theorem for the system (13) is well known.

Theorem 2.2

(i) Let f E L2(O, T; _z,) and Uo E H be given. Then there exists a unique weak solution of

(13) which satisfies u E C([O,T];H) N L2(0, T; V), VT > 0 (Lions and Prodi [8]).

(ii) Let f E L2(O, T; H) and Uo E _z be given. Then there exists a unique strong solution of

(13) which satisfies u E C([0, T]; V)n L2(0, T; D(A1)), VT > 0 (Kisetev and nadyzhenskaya

[5]).

[]

We will denote by W(t) : uo --* u(t) the nonlinear semigroup associated with the solution

of Navier-Stokes equations.

Let us introduce the following result [10, 9] which is needed for the convergence of u, as

the regularized parameter e --* 0.

Proposition 2.1 Let {uk} be a sequence of vectorfieIds that converge weakly in L2(O, T; V),

weak-Star in L°°(O, T; H) and strongly in L2(O, T; H). Then, the following limits are obtained

for any vector function w in y = {w E C(0,T; Iz);w' E L2(O,T;H)}

(a) lim'fr(uk(t), w'(O)dt; =/r(u(O, w'(t))dt,
k-,oo Jo JO

(b) lim [T(vuk(t), Vw (t))dt = fo:r(vu(t), Vw (O)dt,
k_oo Jo

/o" /o(c) lim b(uk(t),,,k(t),,,,(t))dt = b(,_(t),,_(t), _(O)dt.
k---* _

[]



3 Uniform Estimates for the Solutions

In this section we will establish various estimates uniform in e for the solution of reg-

ularized Navier-Stokes equations. These bounds will be used to establish the limit of these

solutions to the conventional Navier-Stokes equations.

Lemma 3.1 Let f E L2(0, T; H), then the weak solution u_(t) of the regularized Navier-

Stokes equations satisfy

(i) sup I_(t)l_ < all,
_E[o,_

Z"(ii) IVuJt)l'd_ _<d2,

where dl, d2 are both independent of e.
=,

Proof: By taking the inner product of (12) with u_(t), we obtain the energy equality:

Here we have used the fact that b(u¢, u_, u¢) = O. By applying Young's inequality and the

Poincar_T,emmaIV,,,I__>_1,,_1_,weget

d 2

_1,,_1+ 2_11,,_11_+ _,lV,,2 < IsI_ (14)

where #1 = 47r2/L 2 is the smallest eigenvalue of the Stokes operator A1. If we drop the

positive term associated with e, we obtain

d 2 ISl2
Z/I.._I + _.,,1_._1_-< _.

Hence, by integrating the above inequality from 0 to t, we get

I,,_(t)l_ <__lu_l_e-"' + g Is(s)l' _-_('-')ds,

with a = u#l. That is,

sup [u/t)l _ < dl.
te[0,T]

=

i



with dl =dl(_,o,f,_,T)=l_ol 2 + 1 A T-_ If(s)12ds.

If we drop the term 2_11_,11_ in (14) and integrate from 0 to T,

_oT 1 _oTI_(T)t _ -4- _ IWM_dt < I_ol _ + - Ifl_dt.

This implies

f0 lf0 TIW'M_dt _ 5 [ I_°1_ + a-- lfl2dt ]"

That is

TIw,(t)l_dt _ d_, d_ = dl
v

Notice that dl and d2 do not depend on e.

(15)

[]

Corollary 3.1 Let f E H be independent of time then,

(i)l,,,(t)l = _ I,,,(0)l=e-_' + pg( 1 - e-_'), Po= If/, Vt > 0,
Ot

fo r i Ifl2T),(ii) IV"'l=dt < -;( I'_'°1=+ ----X-- T > 0.

Proof: By integrating (14) from 0 to t with f E H, we obtain result (i) with Po = If l� a.

Result (ii) is a direct consequence of (15).

[]

Lemma 3.2 Let f C L_(O, T; H), then the strong solution u,(t) of the regularized Navier-

Stokes equations satisfy

(i) sup IW_(t)l _ < d3,
te[0,T]

(ii) IAx,_,(t)l=dt <__d4,

where d3, d4 are both independent ore.



Proof: We consider the strong solutions and take the inner product of (12) with Alu_

obtaining

d ==
IW,,I _ + 2_1A_/%,1*+ 2_IA_-,I * = 2(S, A_._).

Here we have used the fact that b(u,, u,, Alu,) = 0 and

(Au,,AI_,_) = (A1/4AS/4tt,,Aa/2u,)

= (AS/4u,, A3/4u,)

= IAS/4.,12

since D(Aa) = D(A a/2) and both A, Aa are self adjoint. By applying Young's inequality, we

get

dlvt,,l' + 2e IAS/4,,,I' + vlA_u,t 2 < Irl= (16)
V

We can drop the positive term 2e [AS]4tte[ 2 and use the inequality IAlu,]* >/zl]Vu,] 2 to get

V.,l _ + _alV._l _ < Isl' (17)
v

Integrating the above inequality from 0 to t, we get

iv,,,(01____iv,,_ol._=,+ __1fo'ls(_)l=e--('-'>ds,

where a = v#l. This gives ....

sup IVu.(t)l _ _< d,.
tc[o.Tl

with d, = ds(u,o,J',v,T)= IV,,,ol*+- IS(s)l*d,.
/]

We can drop the term 2e]AS/4u,I _ in (16) and integrate from 0 to T to get

]oT lZ_[V._(T)I' + v lAx,,.l'dt < IV-_I' + ; If l'dt. (18)

This implies

fo r ]Alu,]2d t < 1iv ]Vu_°]2+ lfo T

That is

WlAa.,(t)12dt <__d4,

Notice that ds and d4 do not depend on e.

d3
d4 _ --"

/2

=

10



[]

From this proof we can easily deduce the following results.

Corollary 3.2 Let y 6 H be independent of time then the strong solution u,(t) satisfies:

(i)lV,_=(t)l= < IV,_(O)pe -=_+ p_(1 - e-='), p2 _ IfI---_, V t > O,
V_

foT i( IIPT),(ii) IAl_12dt_< IV_ol2+ _ T > 0.
// V

[]

4 Limit to the Navier-Stokes Equations

In this section we will establish the convergence of the strong solution of the regularized

Navier-Stokes equations as e _ 0. In [10, 9], a similar convergence result for the weak solution

was established under certain conditions. In this section we will prove the convergence

without any assumption on the bound for the solutions.

Theorem 4.1 Let u,(t) be the strong solution given by Theorem $.1. Then as e _ 0 ,

the solution u_ converges to a unique limit which is the strong solution of the Navier-Stokes

equations.

Proof." We need three forms of convergence for appropriate subsequences. Namely,

(i) _._, _ _ in L2(0,T; ?) weakly;

(ii) u.., _ u in L_(0, T; H) weak-star;

(iii) u_h,_ u in L2(0,T; H) strongly,

(19)

as c k, --_ O.

It follows from Lemma 3.2 that u,h E L2(O,T;D(A,))n L=(0, T; T_) with hounds in-

dependent of ek. This easily implies (i) and (ii). (In fact, better convergence results are

obtained.) The strong convergence result (iii) can be established as follows:

11



Let {u,,} and {ue,} be two sequences of strong solutions of (12) corresponding to the

, and et 1same initial data with ek = _ = T, respectively. (i.e. ek, et --_ 0 as k, l --_ oo.) We

denote by ,`,(t) = ,`eh(t)-,`et(t) so that ,`,(0) = 0. By subtracting the equation (12) for ,`e,

from that for ,`,,, we get

Taking the inner product of (20) with ,`e, we get

(20)

By using the fact that (A,`,v) = (AI,`,A_v) and the properties of the trilinear form b

established earlier, we obtain

Thus

ld 2
2_1,`,1 +ek(AI,`,,,AI,`,)-e1(AI,`,t,AI,`,)+ ulV,`,12- b(,`,, ,`°, ,`,,) = 0.

ld

2 dt I,`,l 2 + vlV*,,I 2 _ ek [(Ax,`,,, AI,`,)I + E_[(AI,`,,, Ax,`0[ + Ib(,`,,,`,, ,`,,)l.

The trilinear term can be estimated using (11) as,

(21)

_<cl I,`,1IV,`,l Iv,,,, I
2

Cl " _!- 2

IV,`,l_+ _N,I IV,`,,I •-<g

Substituting the above result into (21), we obtain

d 2 2
_N,[ + ulV,`,[" _<2ek IA_,`,,[ [AI,`e[ + 2ez [Alu,,[ [Alum[ + C_l,`,[*IV,`,,[*.

13

We drop the positive terrn UIV',`_I2 and integrate this equation from 0 to t, and noting that

,`JO) = O, we get

2ek [AI,`**[ [Ax,`,ld_- + 2et

+_ :t 2,,, fo I,`A IV,, ,, l%,-.

IA_,`,,I IAx,`,IdT

(22)

i2



From Lemma 3.2, we have u,h E L2(O, T; D(A1)) with bound independent of ek. Hence by

applying the Schwartz inequality we have

ek fo*lAxu,,l IAxu,ld'r <_ ¢k( fo'lAlu,hl2dr)X/2( fo'lAlu,12dr)X/2

_<6k(31/2d4).

Similarly we have

e, IA_u,,I lAin,]dr < e,(31/2d,t).

Since from Lemma 3.2 u,k E L°°(0, T; T_) with bound independent of ek,

Combining all of the above results into inequality (22) we get,

I,,,(t)l 2 <_2.3X/2d,(6_, + ¢,) + c_d3 [' [,,,(w)12d,. (23)
v Jo

Notice that here cx,d3 and d4 are all independent of e. Now, if we denote y(t) = jot lu,(r)12dr

then (23) becomes

v(o)= o.
From this we can deduce that,

y(t) <311'v(ek + 6,)_-_4 exp t - 1 , t • [O,T].

Hence,

fo T I,_,(r)l_dr _ o, aS _k_61 _ 0.

That is

I1_,,,- ",,ll_,(o,r;m---, 0, as ,_,,, --, 0.

This means {u,,} is a Cauchy sequence in L2(0, T; H) and there exists a limit u in L2(0, T; H)

such that

I]u,h - t, IIz,'(o.r;n) _ 0 as 6k _ 0.

13



This completes the proof of the strong convergence result (iii) of (19).

Let us now establish the limit of the equation (12) as ek --+ 0. Let us take a test element

¢ such that

¢ C C(O,T;V) and ¢b' E L2(O,T;H).

Taking the inner product with (121, we get

Integrating with respect to t and then integrating by parts we get,

(u_h(T), dp(T)) -- (u_h(0), ¢(0)) - j/0T(u,h, ¢')dt

Z" ]o+ b(u,,,u,,,¢)dt. = (I, ¢)dt. (241

Let us choose ¢ = ¢ E T)(0, T; V). Using the convergence Proposition 2.1 we can take

the equation (24) to the limit as ek ---+0,

J0T(- u,¢')dt +

Here the term

as e_ --_ 0 since

/o /o /0v (Vu, V¢ )dr + b(u, u, ¢ )dt. = (f, ¢ )dt.

ek Alu_h, Al¢ )dt --_ O,

foT(Aluth, Ale)dr <_ const, independent of el,.

Since u E L_(O, T; D(AI))ML°°(O, T; ?), we can conclude that u is indeed the strong solution

for the conventional Navier-Stokes equations.

[]

From Lemma 3.1, we can deduce that the weak solutions u,k E L2(0, T; ?) gl L°°(O, T; H)

are hounded independent of ek. Hence the convergence results (i) and (ii) are satisfied by

14



the weak solutions. However, such convergences are not sufficientto conclude the strong

convergence in L2(0, T; H). Therefore, Theorem 4.1 is not valid for weak solutions. We can

nevertheless establish a convergence theorem for the weak solutions provided they satisfy a

certain hound. The following theorem is proved in [10, 9]:

Theorem 4.2 Let u, be the weak solution of problem (12) given by Theorem 2.1 with I E

L_(O,T;H). Moreover, u, E Lco(O,T;LS+6(f_)) uniformly in e (6 > O) and t, > c, where c

is a positive constant. Then, for e ---* O, u, approaches a unique limit u which is the weak

solution of the Navier-Stokes equations.

[]

5 Convergence of T-time Periodic Solution

In this section we will show that the T-time periodic solution of the regularized Navier-

Stokes equations converges in the limit to a T-time periodic solution of Navier-Stokes equa-

tions. Existence theorems for T-time periodic solutions to the regularized Navier-Stokes

equations were established in [10, 9]. For similar existence theorems for conventional Navier-

Stokes equations see [12, 17, 14]. Let us first give a definition for the time periodic solution.

Definition 5.1 Let fCt) E L_o_(-cx),+oo;H) and be periodic with period T. Then u,(t)

is said to be a T-time periodic solution of regularized Navier-Stokes equations if it satisfies

u,(t) E L_(-oo, +oo; H) M L_o¢(-co, +oo; V), T-periodic in time and

_, {-(,_,(t), ¢'(t)) + e(A,_,(t),A¢(t)) + u(Vu,(t), V¢(t))

+b(_,,(t),u,(t),¢(t))}dt=f?5(l(t),¢(t))dt, V¢ EY (25)

with y = {¢ E C0(-oo,+oo; V) and ¢' E L2(-oo,+oo; H)}.

Here C0(-o% +oo; V) denotes the set of continuous V-valued functions that vanish outside

a compact time interval.

15



In [10, 9], it has been proven that a necessary and sufficient condition for a T-periodic

solution to be a weak solution in (-00, +co) is that it must be a weak solution in the

interval [0, T]. The regularity of periodic solutions can be obtained by noting that 3t, 6

(-00, 4-00) such that u_(m, tl) 6 V. We use this as the initial value and study the regularity

in [tl, 00) by standard methods [15]. Repeating this in each interval we deduce the regularity

of the periodic solution in the entire interval (-00, 4-o0) as u,(t) 6 L°°(-00, +00; V) A

L_(-00, 4-00; D(A)). Let us now state the main theorem:

Theorem 5.1 Let I(t) C L_:(-00, +00; H) be given and u,(t) 6 L_(-00, +00; V) n

L_o_(-00 , +00; D(A)) be the T-time periodic solution of the regularized Navier-Stokes equa-

tions. Then as e _ O, u,(t) converges to a limit u 6 L°°(-00, +00; I_')_L_(-00, +00; D(A1))

which is a T-time Periodic solution of the Navier-Stokes equations
= ? : ::

Proof: Since u,(t) is a T-periodic solution which satisfies (25), for any k 6 z we can choose

a test function _k(t) -- ,bo(t) so that it vanishes Outside the compact interval (kT, (k 4- 1)T).

Thus,

k+l)T {-("'(t),¢ o(t))+ e(_",(t),A_'o(t)) + _'(V",(t),V'_o(t))
f(k+l)T

+b("'(t)'"'(t)'_'°(t))}dt = JkT (sCt),_,o(t))dt, Vk 6 z,

with u,(t) 6 L°°(kT,(k + 1)T; V)nL_(kT,(k + 1)T;D(A)). In particular if we let k= O, we

obtain the strong solution in the sub-interval (0, T).

Let {u,k } be a sequence of such solutions with ek = 1/k. Then,

f0_{-(...(t), _ :,(t))+ _ (zx_.,(t),zx,_o(t))÷ _(w..(t), v_ o(t))

Z+b(_,._(t).,_.,(t).¢o(t))}dt = (I(t). ¢o(t))dt.

' L2(0, T; H).V ¢oeC(O,T;V) 'ko6

Fr0m Lem_ 3.2, we have the strong solution u, h 6 L2(0, T; D(A1)) n L_(0, T; P') with

bounds uniform in ek. Thus, by applying the convergence Proposition 2.1 we obtain

f0T{--(u(t), ¢ o(t)) + v(W(t), V¢0(t))

16
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Here

as Ck --+ O.

+b(,,(t), ,,(t), ,_o(t))}dt= _jf(s(t), _,o(t))dt,

V ¢0 6 C(O,T;V) ¢'o6 L2(O,T;H).

jfo Te_ (Au,_, A_ o)dt --* 0

Now, by periodicity of the strong solution we get

(k+l)T

T (-(u(t), _ _,(_))+ _(w(_), v¢ _(t))

/(k+l)r
+b(u(_),u(t),¢_(t))}dt=j_T (S(t),_(t))dt, (26)

for each sub-interval (kT,(k + I)T). Here we denote _bk(t ) = ¢0(t -- kT).

The above result implies that u(t) e L°°(kT,(k + 1)T; V) n L2(kT,(k + 1)T; D(At)) is a

strong solution in each sub-interval. Hence, by choosing a suitable ¢ (t) and summing over

k, we get (25) with e = 0. This completes the proof.

[]

6 Upper Semicontinuity of Attractors

In this section we will show that the compact global attractor Ae associated with the

semigroup We(t, .) converges to the compact global attractor A associated with the conven-

tional Navier-Stokes system. We prove this result by establishing the upper semicontinuity

of Ae at e = 0. In this section f C H and is independent of time.

We begin by showing that We(t, .) admits a compact attractor A, in H for each e > 0.

According to Ladyzhenskaya [6], the formal definition of a global attractor is as follows: A

set A_ C H is called the global attractor for the semigroup We(t, .) if

(i) Ae is bounded in H;

(ii) Ae is an invariant set, We(t,0;Ae) = A,, Vt C R;

(iii) A, is a compact set that attracts the bounded sets of H.

17



For a study on the global attractor to the Navier-Stokes equations the reader is refered to

Constantin, Foias and Temam [3] and Temam [16].

It follows from Corollary 3.1 that for I E H we have

I,,,(OI__<l,,,(o)l_-_'+g[1-_-_'], _>o, (27)

where e( = v#l and po -- If [/a. Note that both a and po are independent of e. Hence, for

any ball Bao = {u,(0) E H; ]u_(0)[ _< Ro}, there is a ball B_ o in H centered at origin with

radius ro > Po (Ro > ro) such that

1 in a_ - p_
W,(t,O;B_) C B_o, for t >_ to(Bp_) = -_ r2° p2° .

The ball B_ 0 is said to be exponentially absorbing and invariant under the action of the

map W_(t, 0; .).

Recalling the inequality (14), we have

d 2

(28)

Integrating from t to t + 1, we obtain for uo E BRo

- ro_+ , v t > t0(B_).
Jt v

(29)

Now, we recall the inequality (17),

dlv,,,I _+ _,_lV,,,I__<Isl_
V

We drop the positive terms v#l[Vu,[ _ and integrate with respect to r from s to t + 1 to

obtain

IV,,,(t + 1)1' _< IVu,0)l _ + Isl_(t + 1 - s).
v

We then integrate the above inequality with respect to s from t to t + 1 to get

_ [,+1 ISIsIV..(t + 1)l_ < [V"'O)12ds + 2u-
Jt

18



It follows from (29) that

- ,,]+ --+ = R,_,
v a

V t >_ to(BRo) + 1.

This m_ns for ,,_o • B_ and any -,->__to(B_) + 1, we ha_e ,,,(_') e BR, = {,,,(_') e
^

v; Iv,,,(-,)l <__R,}. That is,

w,(_,0; Bin) c B_,, for_ > t0(Bm) + i.

From Corollary 3.2, it is easy to show

(3o)

iv_,,Ct)l , _<iv,,,(_)l ,_-=c,-_)+ p_ (1 - e-_'C'-")), V t > 7" _> to(BR_) + 1,

where a = v/t1 and p_ = I112/va. Again, both a and Pl are independent of e. Hence, for

any ball Be,, there exists a ball B,1 in V centered at origin with radius rl > Pl (R1 > rl)

such that

W_(t,r;BR1)CB_,, fort>_t,(BR_)=to(B_)+l+lln R_-p_
r_ - p_" (31)

The ball B,_ is said to be exponentially absorbing and invariant under the action of the

map W_(t, 7"; .). Combining results in (30) and (31) and applying the semigroup property

gives us

W,(t,O;BRo) =W_(t,_';W,(%O;BRo)), _" > t0(BR_) + 1

=W_(t,r;BR_)cB,,, VtZt_(Bno).

That is, ball B,_ of radius rl in _" will absorb any bounded set B_ in H. Since the

embedding of V in H is compact, we deduce that W_(t, 0;-) maps a bounded set in H into

In addition, the operators W_(t,0;.) are uniformly compact fora compact set in H.

t >_ tx(Bp_). That is,

[.J W_(t,O;Bm)
t>__t_

is relatively compact in H. Due to a theorem from Temam [16, Theorem 1.1], there exists a

compact attractor A, which attracts every bounded sets in H. A, is the global attractor for
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operators W_(t,0; .) and it is also the or-limit set of the absorbing set B,, (i.e. A, = w(Br,)).

This means if we denote W_(t,O;Bu)= Bu(t ) then

Note that the global attractor A, must be contained in the absorbing balls in H and I?:

A, c B_0 Cl B,.

Notice that all the above bounds are independent of e. In particular, for e = 0, we obtain

existence of the compact attractor A for the conventional Navier-Stokes equations. We now

prove the following theorem:

Theorem 6.1 For e >_ O, We admits a compact attractor A, which attracts bounded sets of
y

H and is contained in the absorbing balls B, o M Brl, where ro and rx are independent of e.

Moreover, dH(A,, A) _ 0 as e -* 0.

Proof: We need the following result [4, Lemma 2.1]:

Let X be a Banach space and T(t), t :> 0, a semigroup on X. Let Th(t) be an approximate

semigroup (depending on a parameter h > 0) to the semigroup T(t). For $ > 0, let A/'(B, 5)

denote the &neighborhood of a bounded set B E X which is the union of open balls of radius

5 centered on B.

Proposition 6.1 Let B E X_be a bounded set and bto, l,lx be two open sets such that

Af(B, do) C U0, N'(B, dl) C Ul for some do, d_ > O. If

(i) 13 attractsUo under T(t) and

(ii) Th(t) approzimates T(t) on hi1 uniformly on compact sets of [to, oo), with to > O,

then for any 5 > O, there are ho > 0 and ro > to such that, for 0 < h < ho, for t >_ TO,

=

y=

E

=

Th(t)(Uon ) c ar( ,

2O
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We will now prove the semicontinuity property for the global attractor A,. This can

be proven by showing the hypotheses of above proposition are satisfied by W(t,O;.) and

W_(t, 0;-) for e small enough. Clearly, it is sufficient to show that the 6-neighborhood of

attractor A is an absorbing set and that W¢(t, 0; .) approximates W(_, 0; -) on BR2 = {u ,(0) E

T_; IVu_(0)] _< R2} uniformly on compact sets of [0, oo). Let us prove this in two steps:

First step:

Let A;(A, 6) be the 6-neighborhood of the attractor A. Since A is a global attractor, for

any bounded set Bao = {u(0) E H; [u(0)[ __ R0} C H

dH(W(t,O;B_),A) _ 0 as t _ oo.

Here dH(A, B) is the semidistance of two subsets A, B of H:

dg(A,B)=sup inf d(z,y).
mEA yEB

Thus, there exists 6 > 0 and t > ts such that

6

dH(W(t,O;B_),A) < 5'

This implies

for t _ Q.

C N(A,6), for > ,,.

This shows that Af(A, 6) is an absorbing set.

Second step:

We want to show W_(t, 0;-) approximates W(t, 0; .) on BR2 uniformly on compact sets of

[0, oo). By subtracting (13) from (12), we obtain for w = u,- u

w' + eAu, + vAlw + B(u,, u,) - B(u, u) = O.

Taking the inner product with w, we get

2_[wld [2 + e(Au_,w) + u[Vw[ 2 = b(w,w,u,). (32)
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Since D(A 1/2) = V = D(A1), the second term of left hand side of equation (32) can be

written as

This leads to

e(Au,, w) =e(Au_,u,)-e(Au,,u)

= _IAa/h,,I_ _ e(Aa/2uo A_/2u)

= elA_/2u_]2_ e(A1/2u,,Alu).

1 d 1_1_+ _IA_/_ I_+ ,_IV_i_ = e(A_/2u,,A_u ) + b(w, w u,).
2 dt

By applying Young's inequality, we have

e (A1/2u_, Alu)

The trilinear term can be estimated as

< ¢IA_/%,I IA_,I

e _i/2 2 elA_,,l_"

_<_ IwI IV,.,,I IW,¢I

< _IV,,, I_+ c_ I,,,I_IV,,_I_.-- 2t,'

By combining all of the above estimates in (32), we get

d
_lwl _÷ _IA_/=,,_I_+ _lW, I__ _IA_,_I2+ _lw I_lW, l_.

V

We can drop the positive terms e IAm_,,12 and vlVw i2 to obtain the following differential

inequality

d 15 c_ i_lVu_l_ (33)_1,,, < elAl,,I _+ _1,,,

Using Corollary 3.2 we get,

=

IV,,(,)l _ < IV,,,(o)l_ -'_' + p_(1- e-';").

22 =
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This implies that any ball Ba=

satisfy

W, (t, 0; BR,) C Bs,, for t > 0.

This means if u,(0) e BR,, then W_(t, 0; u,(0)) is de_nea and belongs to B_,

bali BR2 is therefore invariant under the map W.(t, 0; .). That is , we have

]Vu_(t)l _< R=, t > 0, for u,(0) e BR,.

= {=,(o) e % Iv=d0)l <_R2} in _>with radius R2 > pl will

fort>0. The

(34)

Let u,(0) e BR= then it follows from (33) that

d 2 12 c_ R_ [w 12'
_/[w I < e lAx1, +

From the standard Gronwall Lemma, (35) gives

t _> 0. (35)

_ Iw(0)l2exp dr

+e fo' tAx,,(s)l 2exp (ft _23-dr) dac2 R2 \

-- e IAx,,(s)l 2 exp &,
V

where w(0) = ,,,(0) - ,(0) = 0.

Let us now consider t E [0, T] such that 0 < s < t < T. This gives

[ c2 172 \ t

[w(t)[2_< e exp iY_T)fo [Z'u(a)[2da"

By applying (it) of Corollary 3.2 (with e = 0), we obtain

I_,(t)l2 _<-_ exp T R] + - . , t e [0, T].
1/

This means for u,(0) C Bn2, then

[W,(t,O;u,(O))- W(t,O;u,(O))IH < g(e,v, R2, f ,T),

with

g(e,v, R2,l,T) = e (R_2va+ - v2 exp
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and

lim g (e, v, R2, l, T) = 0.
¢---_ 0

Hence We(t) approximates W(t) on BR2 uniformly on [0, T]. According to the Propo-

sition 6.1, then for any 6 > 0, there are eo > 0 and r0 > 0 such that

W,(t)(B_NBna)CA/'(A, 6), forO<e<_o, t>_ro.

Since the attractor A, is contained in B_ A Ba2, we have

w,(,)(&) c N(A,s), for 0 <, < ,o, t >__*o.

Since A¢ is an invariant set, we deduce that

h_ C A/(A, 8), for 0 < e < eo, t >_ to.

Since g is arbitrary, we obtain the upper semicontinuity of A, at e = O:

dn(A,, A) ---0 0, as e --* 0.

[]
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